
MatterFITM: Powering a comprehensive solution for
blockchain-based financial instruments

Chris Odom

and Michal "Mehow" Pospieszalski

chris@matterfi.com
mehow@matterfi.com

Nov 13th, 2022

Abstract

A comprehensive system, based on open protocols, providing:

• A currency-agnostic wallet that integrates multiple blockchains and their related forks and
token protocols.

• With on-blockchain, off-blockchain, and cross-blockchain interactions where users maintain
control over their own funds.

• User-controlled identity and payments across all chains, based on BIP-47/OBPP-5 payment
codes. Using our software, users can create re-usable, public addresses that work as
a public ID across all blockchains (and off-chain) and that can receive funds privately
on-chain (because the public address never appears on-chain). This public ID also works
as a return address, so you can see who sent you a payment and send them a reply, and so
parties are always able to prove to each other that any given deposit or withdrawal really
was sent to or from the identified person.

• User credentials that can optionally be ’stamped’ by 3rd-party authorities for satisfying
the KYC-AML requirements of regulated parties (such as banks) while maintaining users’
control over their own identity.

• A solution for rampant problems of theft and fraud wherever users deposit their funds with
3rd-party custodians. Our strategy transforms what were once custodial entities into what
we call notaries and auditors who individually lack possession or control over deposited
funds, and who are unable to falsify receipts. All withdrawals are based on a multisig,
X-of-Y vote of entities who audit each others’ signed receipts.

• An integrated (and optional) smart-card hardware wallet for secure storage of user keys.

1. Introduction

The Bitcoin blockchain and its derivatives provide a much needed foundation layer for a
system of hard money where transactions are irreversible and censorship-resistant, consisting
purely of peer-to-peer payments [6] secured by proof-of-work.

The blockchain ecosystem is also the ideal medium for issuing 3rd-party tokens. These tokens
allow the blockchain-based circulation of unique units of value from different issuers. Several
protocols already exist, including Simple Ledger Protocol (SLP) [2] on Bitcoin-based blockchains,
and ERC-20, ERC-721, and ERC-1155 on Ethereum.

Blockchain users and server operators need a reusable address that can serve as a public ID, and
that also supports the functionality of return addresses. Solving this problem is critical for usability
and for unifying identity across all chains. We propose to accomplish this using the OBPP-5

1

mailto:chris@matterfi.com
mailto:mehow@matterfi.com


address format in conjunction with identity credential support built into the Open-Transactions
framework.

Blockchain users often deposit funds with 3rd-party custodians such as exchanges for the
increased functionality available there, such as trading on markets. These 3rd-party custodians are
historically where most theft and fraud have occurred, and the losses are in the billions.

Unfortunately, servers in use today must be trusted to hold the funds, to accurately maintain
their internal ledger, and to faithfully execute the transactions requested by their users. The
MatterFi ecosystem solves this problem using the MatterNode, which is a server that implements
the Open-Transactions protocol. The MatterNode is based on cryptographic proof instead of trust,
allowing any willing parties who wish to contract with each other to enjoy the benefits of a server
without needing to trust it.

In this paradigm, transaction servers are transformed into mere notaries, only able to counter-
sign contracts that have first already been signed by wallet users. Since only each wallet has access
to its own private key, receipts are unforgeable by the MatterNode, who can only "timestamp"
transactions as they come through, but cannot falsify them.

Such an off-blockchain server, based entirely on cryptographic proofs, is what makes it possible
to prevent theft of reserves by storing blockchain coins and tokens in multi-signature voting pools
(X-of-Y) who audit each other. Whenever a withdrawal needs approval, the auditors vote multisig
on-blockchain to release funds—but only when authorized by users’ signed receipts. No one
has so far built such a pool because it is not possible without using a, off-chain server based on
cryptographic proofs. Custodial servers in common use today do not yet offer this advantage.

2. MatterID

Ascertaining and using identity is critical for many blockchain-based businesses. What is “identity,”
from a software perspective? Your social security card or driver’s license is not the sum total
of your identity, not even in court. Like a marriage license, or a dog license, or even a witness
statement in an affidavit; each is just one piece of evidence about you. Or more specifically, each
is a claim (or set of claims) about you that has been certified by someone you know, or by some
official authority that others trust. These pieces of evidence are like a cloud formed around you.

But even the cloud is not your identity itself. Identity is an ethereal thing. The cloud merely
consists of various pieces of evidence about your identity, which is the closest we can ever achieve
in the real world to tracking a person’s identity. This will always be true. Put another way, having
the name of “Bill Gates” is not the same thing as being the Bill Gates who founded Microsoft. It’s
not the name alone, nor some singular taxpayer ID number that imbues identity, but rather, those
names and numbers are just examples of verified (or verifiable) facts about that person.

A person’s true identity can never be tracked as anything more than a set of claims – and claims
about those claims – regarding specific facts, relationships and accomplishments in that person’s life, that
distinguish him from anyone else subjectively, in the eyes of those he is interacting with. The only question
that remains is whether the user will create and control his own credentials, rather than an
authority.1

However, even given a system where users have full control over their own cryptographic
credentials, we can still have authorities, and authorities can set permissions or revoke access
in their own systems. The MatterFi decentralized model of identity provides users with self-
determination, while ensuring that various platforms can still regulate their internal systems.

1As seen with X.509 certificate authorities.

2



3. Identifying Users and MatterNodes for AML-KYC or Other Purposes

One requirement for many blockchain-based businesses is to be able to identify a user, and from
there to be able to link that user to the signatures they sign, the payments they make, the messages
they send, the claims that distinguish their identity, and authentications about those claims made
by various authorities. But how can we associate a person’s identity to a single ID, given the
ethereal nature of identity itself? How can we prove which metadata is authoritative, given one
person’s signature or another’s?

In order to answer this question, we will examine what’s possible using the MatterID imple-
mentation of OBPP-05 payment addresses, identity credentials, and blind claims.

MatterFi employs Open-Transactions identity credentials, which allow users to make claims
about themselves regarding their facts, relationships, and accomplishments. Moreover, anyone
else, including trusted authorities, as well as colleagues, family members, etc. can sign verifications
of those claims. And it is in those authenticated claims where we can find the proofs needed
for identifying each person according to the needs of each scenario, such as when an exchange
performs a withdrawal for one of its users.

But first, we must be able to link a set of credentials to a specific re-usable ID and its signatures.
And for that, we start with OBPP-05.

3



4. OBPP-05

The OBPP-05 Payment Code is a way to format blockchain addresses so that each user can have a
single, re-usable address across all blockchains, yet the address itself does not actually appear in
any on-blockchain transactions, and thus cannot be observed publicly on-blockchain by any third
parties, unless they have the party’s private key. Instead, the receiving addresses are calculated
deterministically via “spooky action at a distance” using a Diffie-Hellman shared secret. [14] This is a
process whereby each party, using his own private key and the other party’s public key, is able to
calculate a shared secret key, which no one else can calculate without one of the private keys. The
parties also increment an index after each transfer, so there is a new blockchain receiving address
calculated for each transaction between them (see diagrams).

4



The calculation, transfer, storage, and maintenance of new Bitcoin receiving addresses has up
until this point been a huge headache for Bitcoin merchants, exchanges, and users, who usually
need to generate and track a new receiving address for each and every transaction. Receiving
addresses really are a low-level detail that should not require user involvement, and OBPP-05
makes that experience a reality for the user, while restoring some privacy and fungibility to
on-blockchain transactions, and while simultaneously allowing users to know for certain who
they have paid and who is paying them, without having to constantly exchange new receiving
addresses with one another.
Justus Ranvier, chief architect at MatterFi (and the inventor of OBPP-05) said:

Payment codes are a technique for creating permanent Bitcoin addresses that can be reused and
publicly associated with a real-life identity without creating a loss of financial privacy. They are
similar to stealth addresses, but involve a different set of trade-offs and features that may make
them more practical. [8]

It’s important to note that payment codes do not require any changes in the Bitcoin protocol
itself, and so adoption has already begun. Bitcoin wallets including Billion, Samourai and
MatterWallet have already adopted the technology.

The OBPP-05 payment code provides users with a single ID that can be used across all
blockchains, without having to generate a different ID for each blockchain. The same ID will work
on Litecoin, Bitcoin, Bitcoin Cash, etc.—any blockchain where the user holds a private key.

5



I. Useful Properties of OBPP-05 in Distributed Finance:

• A user’s payment code can be freely published everywhere and serve as his ‘public ID’
without fear of losing any security or anonymity.

• Users only need to exchange payment codes once. Thereafter, messages and payments,
agreements, and smart contracts, including DiFi contracts themselves can safely flow between
them, without having to exchange a new address each time.

• The same payment code works across all Bitcoin-derived blockchains, such as Litecoin, BSV, and
Bitcoin Cash, as well as on-and-off blockchain. MatterFi’s roadmap also includes support for
other popular chains like Ethereum and EOS.

• The same OBPP-05 code that is used for payments can also be used for messaging, and for
signing messages that are sent, as well as for verifying signatures on messages received.

• A third party public observer will not see your payment code in any of your actual on-
blockchain transactions. This is because the on-blockchain transactions use receiving ad-
dresses that are generated deterministically by both parties without having to transmit
anything, using a Diffie-Hellman shared secret (“spooky action at a distance.”) [12].

• The parties to a transaction can see their entire history between each other. This is possible
because each party has one of the private keys needed to generate the deterministic receiving
addresses used by the other party.

• This means that when a message or payment is sent, a sender knows for certain who the
recipient is, and there is no confusion that the recipient has provided some third party’s
receiving address instead of their own.

• This also means that when a user receives a payment, the recipient knows for certain who
the sender is. The recipient will see the sender’s “display name” on the incoming payment,
and can even hit ‘reply’ to send a payment or message back to them. Bitcoin ATM operators
constantly ask about this functionality.

The above identity features of the MatterFi ecosystem allow for easy to use world wide on-
and off-chain DeFi. For example, a user can enter into a smart DeFi contract (which has its own
cryptographically signed OBPP-05 identity) and the smart contract can receive and send funds to
the user having a mathematical guarantee that the funds are coming and going to the exact same
OBPP-05 identity. Meanwhile the smart contract (whether its running on some chain or off-chain
on a MatterNode) can maintain a mathematically provable audit trail of it own transactions while
still co-existing in a de-centralized ecosystem. This allows for interesting use cases such as a
on-chain DeFi smart contract that executes a portion of its code in a certain physical location. In
such a case, the MatterNode operator would simply have a 3rd party digitally sign their Nodes
OBPP-05 identity to certify that the server is in fact in a certain location. Government financial
regulators would be ideal location certification identities.

6



5. MatterID Credentials

In this section we discuss how we implement OBPP-05 such that additional data (such as certifiing
a MatterNodes location) is implemented in our identity credential scheme with OBPP-05. It’s not
enough just to prove that a signature really was signed by the expected OBPP-05 ID. We must
also be able to attach metadata to that ID in the form of credentials, consisting of claims and claim
verifications by various authorities.

In crypto software, a pseudonyum (or simply “Nym”) is a potential identity who has a public
address (his OBPP-05 ID in our case), a corresponding private key, and a set of credentials
associated with them. However, that doesn’t mean yet that any real-world information has been
authenticated regarding the actual person behind that Nym.

PaymentAddress + Credentials = Nym(pseudonym) (1)

Bitcoin wallets often disappointingly show your own receiving address (not the sender’s address)
when displaying a record of received funds. But with OBPP-05, when you receive an on-blockchain
payment, there is a display name for the sender. This is because the Opentxs API has already
downloaded the sender’s identity credentials2, which are cryptographically verified against his
OBPP-05 address. The display name field is one good example of the sort of metadata that users
can attach to their credentials via signed claims.

A user’s credentials contain other claims made about himself, regarding various facts, rela-
tionships, and accomplishments. For example, “My SSN is XXX-XX-XXXX, signed Bob.” His
claims may also be verified (signed) by other users, and those claim verifications may also appear
on his credentials. [13] For example, a verified claim might look like this, if we imagined it in
human-readable form: “The hash fingerprint of an encrypted JPG of my scanned driver’s license is
1Jasd876y2jhg34h998, signed Bob” followed by: “We have officially authenticated this information in

2See ContactManager::NewContact(),
https://github.com/Open-Transactions/opentxs/blob/develop/include/opentxs/api/ContactManager.hpp

7



Figure 1: Contact Credential Figure 2: Verification Credential

person and can reproduce it upon demand, signed, Some Trusted Authority.” Note that digital signatures
are unforgeable.

For example, when you first meet someone and add them as a new contact by scanning their
QR code, MatterWallet creates reciprocal verified claims between both parties, proving to themselves
later that they have DeFinitely met each other in real life. This way, a “web of trust” can form
organically, without any need for “key signing parties” as envisioned in the earlier days of crypto.
Various trusted authorities will be responsible to identify users and verify claims, as we shall
explore below. That way, users will be able to prove their identity to one another, without having
to ask the authority, since his signature already appears on the claim verification.

8



6. Blind Claims

User credentials will also take advantage of blind claims, meaning those claims are proven in a
‘blind’ way. To do this, the value field of the claim is encrypted, and the Trusted Authority signs a
hash of this blind value instead of signing the plaintext value as might normally otherwise occur.
However, they have still seen and verified the plaintext value, before signing the claim verification.
This blinding is often desirable. For example, there may be legal requirements in certain situations
to prove a person’s age, and so it would be useful for users to be able to prove their age and photo
when necessary, without having to post their birthdate or photo publicly for the whole world to
see. This is possible using a blind claim.
In Open-Transactions the structure of a blind claim is the same as for a normal claim, except there
is no value field. Instead, the claim includes a blind value field that’s encrypted to a (deterministic)
key; structured like this in Open-Transactions:

Claim Item

Version
Type

Start

End

Attributes

Subtype

Blind Hash

Blind Value (encrypted)
Version Random Nonce Value

Note that the blind value itself is encrypted to a deterministic key which is recoverable from
the user’s seed.3 Publicly only the blind hash is visible on the user’s credentials, as well as any
signed verifications of that claim.

For example:

• The State of California could sign the hash of your encrypted birthdate in order to allow you
to prove your age on demand, when required.

• Alternately, someday you may be able to properly identify yourself to a notary public, and
then he’ll take your picture on the spot, and sign the hash of an encrypted JPG of your
face. So when you are signing documents, not only is your signature provably the correct
signature from your OBPP-05 ID, but you can also reveal your photo to any challenger
while simultaneously proving that an authority has certified that they created that photo, and
authenticated it for that same OBPP-05 ID.

• A notary public – or an on-boarding department – could additionally scan your driver’s
license and then sign the hash of an encrypted JPG of your driver’s license.

3Otherwise we might be forced to use a deterministic nonce instead of a random nonce.

9



• The possibilities are endless. Any data can be authenticated and thus made available for
users to prove to others in the future, without having to reveal that data publicly, and
without having to re-verify their identity over and over again to an on-boarding service over
a webcam.

• We must consider that any data whatsoever that is of value when it’s been authenticated,
will therefore end up being authenticated by someone or another. Organizations will
spring up to authenticate the data and sign the appropriate credentials.
- Sherpas will certify that claimants have actually climbed Mount Everest.
- The Trusted Authority will certify claimants with Approved or U.S. Person status.
- Colleagues will certify they have worked with each other in the past.

Other forms of proofs, including zero-knowledge proofs, will eventually be added to user
credentials. For example, zk-SNARKS and zk-STARKS are promising innovations that will likely
be used for various blind or transparent proofs.

10



7. Open-Transactions Protocol

The Open-Transactions (OT) project is a collaborative effort to develop a robust, commercial-
grade, fully-featured, free-software toolkit that implements off-blockchain transactions purely as
cryptographic proofs. The MatterFi ecosystem consists of proprietary and open source software
which implements the open source OT protocol.

I. Financial Cryptography

Open-Transactions uses strong cryptographic techniques to create secure financial instruments,
such as digital signing to create non-repudiable contracts, and homomorphic encryption to create
untraceable digital cash. In OT, transactions are unforgeable, receipts are destructible, and balances
cannot be falsified or changed without user consent. OT is able to prove all balances, as well as
which instruments are valid, and which transactions have closed, without storing a receipt history,
as long as you have the last signed receipt.

Open-Transactions implements financial instruments as Ricardian Contracts, which are contracts
that can be understood by humans as well as manipulated by software [3].

All contracts in OT use the same basic structure: all parties involved sign an agreement which
is notarized by an independent third party witness. This technique is known as Triple-Signed
Receipts. Importantly, transactions are formed and signed on the client side first, before being
notarized by any server. An OT client is thus ensured that an OT MatterNode server cannot falsify
his receipts against his will, since the server can’t forge the client’s signature.

This basic structure can be built upon to create many types of financial instruments.

II. Financial Instruments

We define an off-blockchain transaction as a group of operations on contracts capable of objectively
proving balances (and changes of balance) between adversarial parties.

All transactions use the same basic structure: the parties involved sign agreements which are
then countersigned by an independent MatterNode server. Transactions are irreversible since the
receipts are always formed and signed on the client side first, before being notarized by any server.
This prevents the MatterNode from falsifying receipts, since it can’t forge the client’s signature.

This basic structure can be built upon to create many types of financial instruments. Those
supported by Open-Transactions include:

• Transfer. An atomic movement of funds from one account to a different account, like a bank
account-to-account transfer.

• Cash. Untraceable cryptographic tokens which can be securely redeemed by the recipient
without revealing the sender.4

• Cheque. A payment which is not deducted from the sender’s account until the recipient
claims it.

• Voucher. A payment which is deducted from the sender’s account at the time of creation.
• Invoice. A payment request which the recipient can opt to pay from any of his accounts.
• Market Offer. An open agreement to exchange a given quantity of one unit type for a given

quantity of another unit type.
• Recurring Payments. An agreement between two parties that includes an optional initial

payment, followed by a set number of additional payments over a specified period of time.

4Based on work by David Chaum [1]. Open-Transactions currently includes Lucre [5] by Ben Laurie.

11



• Smart Contract. A customizable agreement between multiple parties, containing user-
DeFined scripted clauses, hooks, and variables. This is exactly how DeFi is currently
implemented except that thus far people have only implemented them on chain instead of
both on- and off- chain.

We note that OT natively supports DeFi smart contracts which makes it possible with our
system to execute DeFi off-chain where the Node operators set the transaction fees (or make them
free). This allows for new financial implementations that require real time processing and operator
set-able transaction fees. One example would be quant trading. Furthermore, the entire smart
contract need not be off-chain. With our system an infinite realm of hybrid on-and off-chain DeFi
is possible.

III. Destructible Receipts

In the solution we propose, each MatterNode-signed receipt contains a copy of the original
user-signed request.5 Since that request also includes a statement of the balance, we can always
prove the current balance using the most recent receipt.6

In addition, we can prove which instruments are still valid by including a list of open transaction
numbers on each signed request [7]. The request also includes a list of any incoming transactions;
each transaction must use an open transaction number.

At all times throughout the process, all parties using Open-Transactions are able to prove their
current balance, as well as which instruments are valid and which transaction numbers are closed,
without storing any history except their last signed receipt. Alice’s own signature proves these
things to Alice, and Bob’s own signature proves these things to Bob. The MatterNode is unable to
defraud them.

Does this mean that parties should destroy their historical receipts? Not necessarily. But it
should be noted that parties are not forced to keep their receipt history in order to prove the current
state. Proofs which require a full history are O(n), whereas Open-Transactions proofs are O(1).
O(1) balance proofs are preferable to O(n) proofs, because even though most users would choose
to save their transaction history, the risk of a balance proof failing due to data loss does not grow
without bound over time.

IV. Counterfeiting

Since a MatterNode is unable to falsify Alice’s receipts against her will, the only crime left is
counterfeiting funds with a dummy account. That is, even without falsifying any of Alice’s
receipts, a MatterNode can still create a dummy account and then sign a false receipt for that
dummy account, and thus create counterfeited funds which can then be spent to Alice or Bob.

Fortunately, counterfeiting can be easily prevented by auditing the receipts. But while it is
technically easy to construct an audit server, we still need a party who is incentivized to operate
that audit server.

V. Voting Pools

The most ideal solution is for users to deposit their on-blockchain funds (coins or tokens) into
a multi-signature voting pool composed of several notaries who all audit each other, voting
on-blockchain when necessary to approve withdrawals. This is only possible if the off-blockchain

5Based on work by Ian Grigg [4].
6Based on work by Bill St. Clair [17].

12



system is based on cryptographic proofs, as Open-Transactions is.

This Voting Pool arrangement solves two problems at once:

1. Counterfeiting. Multiple parties are auditing each MatterNode, which prevents it from
counterfeiting on its internal ledger.

2. Theft. An individual MatterNode is also incapable of stealing coins out of the pool, since a
multi-signature vote is necessary to retrieve the funds. (And those votes are controlled by
the auditors.)

13



8. MatterFi Voting Pools

Currency exchanges and other trading platforms usually desire to perform order matching more
rapidly than what is possible on the blockchain itself. These services accept custody of user funds,
perform transactions in a separate off-chain system, and use a database to track customer balances.
Typically these services are not cryptographically secured, or independently auditable. Customers
also give full control of their deposited funds to the custodial service, which exposes them to the
risk of theft or loss of their coins.

Unlike legacy currencies, cryptocurrencies can be irrevocably lost or stolen, and it’s typically
not possible to distinguish between insider or external theft. Historically, this ambiguity appears
to have been routinely exploited.

We propose voting pools as an open standard intended to be a universal replacement for
bespoke systems that handle customer cryptocurrency deposits. A voting pool is an arrangement
of notaries to securely store and account for customer cryptocurrency deposits, and to redeem
valid withdrawal requests even in the event the customer’s MatterNode of choice has completely
disappeared. Voting pools are designed to ensure that no single person or organization can ever
perform unilateral actions on deposited funds, in order to reduce the risk of loss or theft, and
custodial liability [11]. Each MatterNode in the voting pool operates its own audit server, and each
auditor has a corresponding blockchain wallet. The blockchain wallet manages the multi-signature
transaction generation, as well as a hierarchical and deterministic list of addresses for bitcoins [16]
and colored coins [15].

When a customer deposits cryptocurrency into a voting pool, he receives corresponding units
in his account on his MatterNode of choice [9]. How? Each audit server watches the receipt
stream for requests to deposit or withdraw bitcoins or colored coins from the voting pool, and
then communicates with its Bitcoin wallet as appropriate. The auditor independently verifies
the Open-Transactions operations of all notaries in the voting pool, as well as the bitcoins held
by the pool on the blockchain itself. The auditor uses this audit data to know when it should
direct the wallet to create a withdrawal transaction [10], and it is also the component responsible
for information sharing and achieving consensus between all members of the pool. Effectively
each auditor conducts a permanent, real time proof-of-reserves audit against all of the notaries
in the pool, and simultaneously enforces it. It is the auditors and the wallets who hold the keys

14



to creating blockchain transactions at the request of the user, and the auditors must all act by
consensus and with the cooperation of the wallet to create multi-signature blockchain transactions.

Each Voting Pool regardless of how many servers aka notaries it contains is still implemented
as a single MatterNode with its own OBPP-05 identity that supports on-chain mulitsig.

I. Security Goals

In order to achieve the desired security and robustness goals for voting pools, the following criteria
are enforced:

• Customers should be strongly discouraged from reusing deposit addresses. The voting pool
itself must never intentionally reuse a bitcoin address.

• All Bitcoin addresses used by the pool must be deterministic for auditing purposes. Each
member of the pool should be able to calculate all members’ series of deposit and change
addresses.

• Withdrawal transaction input selection must be deterministic in order to minimise the cost
of coordinating transaction signing.

• It must be possible to keep a majority of the private keys offline for security reasons, and
bring them online as needed to process withdrawals.

• It must be possible to alter the voting pool by adding, removing, or replacing members in a
coordinated and secure fashion. It is necessary to use Smart Properties to accomplish this.
These are described in the section below on colored coins.

II. Security Model

The goal of the voting pool security model is that users of deposit-accepting services should never
experience a loss of deposited funds.

We can group the various ways in which this goal might not be met into three general
categories:

• Type 1 Event (Theft/Loss). A user permanently loses their funds because a third party has
gained control of them without the user’s consent, or because the private keys needed to
spend them have been irrevocably lost.

• Type 2 Event (Denial of Service). A user temporarily loses some or all of their ability to use
their funds, but no third party has gained control over them.

• Type 0 Event. Type 0 Events will be used to describe all other abnormal conditions from
which the pool must recover which do not directly involve a loss of customer deposits.

III. Security Theorem

If the probability of m + 1 (Type 1 Event) or n − m + 1 (Type 2 Event) services simultaneously and
identically behaving in a malicious or incompetent manner is lower than the probability of any
individual server behaving in a malicious or incompetent manner, user deposits on that service
are at less risk of loss if the service is a member of an m − o f − n voting pool than they would be
at risk if the service is not a member of a voting pool.

Voting pools can guarantee the integrity of user deposits if, in any given situation, at least
m pool members are well-behaving for Type 1 events and at least n − m pool members are
well-behaving for Type 2 events.

15



IV. The MatterAuditor

The MatterAuditor listens to the Audit Streams broadcast by all the Notaries and independently
verifies them for correctness. The same stream which carries regular OT transaction information
also contains the OT receipts for Bitcoin withdrawal requests from the pool. The auditor initiates
or authorizes a blockchain withdrawal transaction via the wallet if and only if the audit for that
service is clean (verified correct).

The auditor is responsible for maintaining an independent copy of the same deposit database
as the transaction server. It also tracks withdrawals from the time at which it receives an OT receipt,
containing a withdrawal request, until the corresponding Bitcoin transaction is fully confirmed on
the blockchain.

All messages which must travel between the transaction server and the blockchain wallet pass
through the auditor.

In order to create withdrawal transactions, wallets must be able to select inputs and change
outputs, and calculate the minimum required transaction fee deterministically. In order to achieve
determinism, the sequence of withdrawals must be globally consistent. Before sending any
withdrawal request to the wallet, the auditors are responsible for achieving consensus on a
serialization order for withdrawals.

The MatterAuditor is proprietary software which is operated by staking MatterTokens.

V. MatterNode

The MatterNode must keep track of all blockchain-denominated balances via OT receipts. In
addition to the separate account(s) for each customer, the server must track a service account to
hold the blockchain-denominated balance owned by the service itself.

If necessary, the server should also maintain an application account to hold the balance of any
funds which are being manipulated by an external system.

For example, in the case of a high-frequency exchange, the application account would belong
to the order matching engine. When a customer enters a trade, the exchange front-end will call
the applicable OT functions to transfer the appropriate balance from the selling customer’s OT
account to the application OT account, and also from the application account back to the the
appropriate purchasing customer’s OT account. Any trade fees that the exchange earns would
be sent to the service account as part of the transaction. This separation of application account,
service account, and customer account, prevents the mingling of funds.

The MatterNode is also responsible for passing PaymentRequests from the Auditor to the
customer, crediting customer balances after the successful receipt of a blockchain deposit, and
passing withdrawal requests to the rest of the voting pool via the audit servers.

The MatterNode must maintain a permanent deposit database containing each PaymentRequest
generated for that server and its associated status (number of blockchain confirmations and the
OT receipt crediting the appropriate Nym with the deposit)

VI. Audit Stream

The MatterNode must broadcast five types of messages in an indexed and hash-chained sequence
which form an Audit Stream.

The five types of messages are:
• Update to an inbox
• Update to an outbox
• Update to an account balance file

16



• Update to a Nym box file
• All MatterNode replies to transaction requests.

VII. OT Client

In order for users to deposit cryptocurrency into the voting pool, the OT Client must be capable
of parsing, verifying, and if necessary forwarding to another blockchain wallet client, payment
requests. This is necessary to ensure a malicious server can not send a fake deposit request that
results in a customer sending funds to an address not controlled by the pool.

All users of services which are part of a voting pool must have an OT client running on their
device in order to use the service. The service front end can communicate transparently with the
OT Client via a local websocket interface.

The OT client will be capable of operating in the background with the bare minimum necessary
interaction in order to provide the lowest possible disturbance of the front end service’s user
experience (UX).

VIII. Voting Pool Key Management

Each server in the pool will have an offline, air-gapped key server for key generation and backup
storage to our hardware wallet. No media of any kind is ever allowed to cross the air gap in the
online->offline direction.

The key server generates random BIP32 seeds in batches (default: 52, or enough for one year).
When a batch is created, it prints the xpubs (extended public keys) for all 52 seeds on paper as
QR codes (alternately on a virgin CDR which is discarded after a single use). This paper is then
manually walked to the auditing server and scanned. The auditing server adds each xpub to the
keyset DeFinition.

At the same time, the key server also prints two redundant copies of the QR codes containing
the xprivs (extended private keys), one per page (one per CD) which the service should hold in
some physically secure fashion and back up securely. It is not necessary for all individual services
to take extraordinary measures to protect the private keys from physical destruction, since the
pool can tolerate a loss of keys that involves less than (n-m) members. One copy held in an offsite
location with another copy held on site is sufficient.

Xprivs are loaded into the auditing server in series number order to create the hot series. Each
participant in the pool should have a method of being notified when the hot series is close to being
exhausted so that an employee can be instructed to load the next xpriv into the auditing server.

New key batches should be generated early before the old batch is consumed (default: 75
percent used). If for any reason one of the participants is late and does not generate a new batch
on time, the last DeFined series number is used for accepting deposits until the administrators of
the other pool members can correct the situation.

The key server must also be equipped with a scanner. Prior to putting any keys into service,
they must be validated.

Validation procedure: The key server will create the first one million public and private
keypairs from each seed in the batch, sign a nonce with each private key and verify the signature
with the corresponding public key.

Then the user will scan in the printed public and private keys, and the key server will verify
the scanned versions match the original versions and repeat the million keypair test.

Both versions of the test must match identically before placing any of the keys into service.

17



IX. Standard Pool Sizes

Every pool represents a compromise between performance and cost. For security and reliability
purposes, higher reliability levels are better, however they must be balanced against the cost factor.
Standard pool sizes are the lowest cost pools that produce a given reliability level.

18



9. Voting Pool Deposit Process

I. Initiation

Customers will normally request a deposit address by interacting with the service front end web
site or some other software application. When the service receives such a request, it notifies the
OT client via the OT client API function: requestBailment.

When the OT client receives notice of a user desire to deposit funds to a voting pool, via any
method, it sends a bailment transaction request to the MatterNode to initiate the deposit process.

The MatterNode validates this request, and replies with a signed receipt. A copy of this receipt
is broadcasted to the audit stream, and another copy is stored inside an initiatedBailment notice
that’s placed in the user’s inbox. The MatterNode adds this association to a bailment database for
future reference.

19



II. Payment Script Generation

When an audit server validates the MatterNode’s reply to the bailment message from the Mat-
terNode to which it is assigned, it adds the receipt identifier to its bailment database and calls
getDepositScript via the websocket interface to the blockchain wallet, using the address identifier
for the next unused deposit address.

The wallet calculates and returns the designated deposit address as P2SH output script. The
audit server uses this information to update the bailment database, and to assemble and sign a
PaymentRequest.

III. PaymentRequest delivery

The audit server broadcasts the PaymentRequest to all notaries and auditors in the pool. The
MatterNode replaces the user’s initiatedBailment notice in the inbox with a pendingBailment
notice containing a copy of the PaymentRequest.

When the other audit servers in the pool receive the PaymentRequest broadcast they add
the deposit to their respective bailment databases. The other notaries in the pool cache the
PaymentRequest to answer verification requests from the OT client.

The OT client should validate the PaymentRequest against the voting pool asset contract. If
it is valid then it should query a random selection of other notaries, at least m − 1, using the
PaymentRequest identi f ier to verify whether they have seen it. If this check is successful, it then
initiates the blockchain transaction by passing the PaymentRequest to the user’s local wallet
application which is configured to handle [[bitcoin :]] URIs.

IV. Deposit and Crediting

The audit server broadcasts the PaymentRequest to all notaries and auditors in the pool. The
MatterNode replaces the user’s initiatedBailment notice in the inbox with a pendingBailment
notice containing a copy of the PaymentRequest.

When the other audit servers in the pool receive the PaymentRequest broadcast they add
the deposit to their respective bailment databases. The other notaries in the pool cache the
PaymentRequest to answer verification requests from the OT client.

20



The OT client should validate the PaymentRequest against the voting pool asset contract. If
it is valid then it should query a random selection of other notaries, at least m − 1, using the
PaymentRequest identi f ier to verify whether they have seen it. If this check is successful, it then
initiates the blockchain transaction by passing the PaymentRequest to the user’s local wallet
application which is configured to handle [[bitcoin :]] URIs.

Type 1 Event: Fraudulent Deposit Address. A malicious or hacked operator may give the
customer an invalid PaymentRequest in an attempt to steal deposits.

Each pool member’s Bitcoin wallet must notify its audit server of any deposits received to
an address which the pool controls. When an incoming transaction is received to an address
the audit servers are expecting due to previously broadcast PaymentRequest, they will use the
getin f omultisigwalletaddress calls to identify the incoming transaction, and gettransactionstatus
to monitor its confirmation status.

Type 0 Event: Deposit Never Received. It’s possible that the customer may never actually
transfer bitcoins after requesting a PaymentRequest.

Type 1 Event: Unknown Deposit. A deposit may be received to an address which has never
been used, and for which a PaymentRequest was never created so no member of the pool knows
to which nym it should be credited.

Type 1 Event: Duplicate Deposit. A deposit may be received from an address which has been
previously used, so the audit servers know to which nym the address is assigned.

Type 0 Event: Dust Handling. The size of the deposit may be below the network dust threshold
(small enough that it would require more in transaction fees to spend than it is worth).

The audit server relays the number of confirmations the incoming transaction has received
to the MatterNode. Once the number is sufficient according to the Funds Available Policy the
MatterNode will issue an OT asset for the amount of the deposit to the nym of the user.

The MatterNode will replace the pendingBailment notice (in the inbox) with a completedBailment
notice, which includes a signed copy of the original bailment request, as well as a copy of the
audit server’s signed notice of confirmations, which includes the transaction identifier provided
by the blockchain wallet.

The OT client processes the user’s OT account inbox, removing the completedBailment notice,
which simultaneously closes the transaction number and updates his OT balance.

The audit servers in the pool must monitor all deposits to ensure the Funds Available Policy is
satisfied to avoid the risk of a double spend or chain fork causing insolvency. Any server which

21



offers more early deposit credits than what it can cover with its service account must have its
audit status set to degraded.

Type 2 Event: Non-credited Deposit. The MatterNode fails to place a completedBailment notice
in the user’s inbox after a successful Bitcoin transfer.

If an initially-seen deposit fails due to a chain fork, and if the user has not yet been credited
with an OT receipt for the deposit, the status of the deposit remains pending. The audit server
should notify the MatterNode by setting the number of confirmations back to zero. In the typical
case of blockchain reorg event, the deposit transaction should re-enter the mempool automatically
and the wallet can assist with this by rebroadcasting it.

If an initially-seen deposit has become invalid due to conflicting transactions which made it
into the blockchain, the audit server should mark the deposit as failed by setting the number
of confirmations to -1. The audit server should notify the MatterNode of the failure, who then
replaces the user’s pendingBailment notice with a failedBailment notice. The MatterNode should
update the status to failed in the bailment database and the address should not be intentionally
reused. The OT client can then process the user’s inbox, removing the f ailedBailment notice and
closing the transaction number. In this case there is no change to the OT account balance, unlike
with a completeBailment notice.

Type 1 Event: Reversed Deposit. A deposit could disappear from the blockchain after the user
has already been issued an OT receipt

22



10. Voting Pool Withdrawal Process

I. Initiation

Customers will normally request a withdrawal of bitcoins from the pool by interacting with the
service front end web site or some other software application. When the service receives such a
request, it notifies the OT client via the OT client API function: outBailment.

When the OT client receives notice of a user desire to withdraw funds from a voting pool,
via any method, it sends an outBailment transaction request to the MatterNode containing the
destination Bitcoin address where the withdrawal should be sent, the amount of the withdrawal,
and an extraFee value. The extraFee is added to the transaction fee required by the Bitcoin network
and is paid directly from the user’s balance and may be zero.

Note: Some customers may wish to have additional restrictions placed on withdrawals,
for example to prevent withdrawals to arbitrary Bitcoin addresses, or to require two-factor
confirmation of withdrawals, or time delays to allow for notification and manual review of
withdrawal requests. All this functionality and more can be provided by users electing to store
their deposits in an OT smart contract instead of a standard receipt. Discussion of the capabilities
of OT smart contracts is outside the scope of this document.

After the MatterNode receives the outBailment transaction request, it removes the total amount
from the user’s balance and places it in the outbox as a pendingBailout receipt.

Type 2 Event: Withdrawal blocking. The MatterNode handling a customer account may fail to
respond to a valid withdrawal request.

When the auditors see the pendingBailout receipt, they create an entry in their withdrawal
database and add the pendingBailout to their queue for the next consensus.

II. Consensus Round Transaction Formation

Each time a new consensus is finalized, the auditors begin processing the specified pendingBailouts
(if any) by passing the address identifier of the first input to be used, the address identifier of the
first change address to be used, and the withdrawal identifier of each output to the Bitcoin wallet
via the startwithdrawal API call.

The startwithdrawal API call accepts a list of outBailments to process, and the set of parameters
which are needed to ensure the transaction process is deterministic.

When the wallet receives this call, it processes the list and parameters per the transaction
construction algorithm and returns a list of signatures and status information for each outBailment.

If the wallet requires the private keys from additional series in order to fulfill the outBailments,
that information will be returned with the status information.

III. Consensus Round Signature Exchange

The auditor takes the signature list from the wallet and broadcasts it to the rest of the auditors. It
also collects signature lists from the other auditors and queues them for delivery to the wallet.

IV. Consensus Round Transaction Fee Accounting

Before the auditor can provide the missing signatures to the wallet, it must ensure the transaction
fee has been properly accounted for. While the auditor is broadcasting and gathering signatures, it
also sends a txFeeNoticemessage to each MatterNode from which a withdrawal has been processed,
indicating their share of the blockchain transaction fees included in that consensus round.

23



Blockchain transaction fees are allocated to a specific server by the fraction of total withdrawals
in the round which originated from that server. The method of calculating the individual shares
should ensure the individual totals add up exactly to the blockchain transaction fees consumed by
the transaction.

When the MatterNode receives at least m identical txFeeNotice messages, it then performs a
balance adjustment by subtracting the amount from its service account for the pool, and adding
that amount to the issuer account for the pool. The auditor cannot release the rest of the signatures
to the blockchain wallet until it validates the appropriate balanceAdjustment notice in the audit
stream.

Type 0 Event: Transaction Fees Accounting. The originating MatterNode may fail to deduct
blockchain transaction fees from its service account and broadcast this receipt in the audit stream.

When the auditor validates all needed balanceAdjustment notices, it delivers the signature
lists to the wallet via the updatewithdrawal API call. The blockchain wallet then adds signatures
to the transaction(s) until it has m, then it broadcasts the transaction(s) to the network. It is not
necessary for each wallet in the pool to include the same list of signatures in the transactions they
broadcast. As long as all the transactions are valid, the network should accept one version and
include it into a block.

Type 2 Event: Transaction Signature Error. All or a portion of the signatures a wallet receives
from the other pool members may be invalid for the given transaction.

The startwithdrawal API call returns a list of one or more normalized transaction identifiers
(ntxid), where each ntxid is linked to a list of the withdrawal identifiers corresponding to the
outputs in the transaction. The auditor updates its withdrawal database with the ntxids, and
begins tracking the confirmation status of the withdrawal. It reports all this data to the MatterNode,
and each new confirmation of the transaction.

V. Completion

Like deposits, withdrawal transactions are not considered final until maturationTime confirmations
have occured. Once the auditor reports a number of confirmations greater than or equal to
maturationTime for the blockchain transaction associated with a pendingBailout receipt, the
MatterNode replaces that receipt with a completedBailout receipt. When the auditors see the
completedBailout receipt in the audit stream they can prune the associated entry from their
withdrawal database and stop sending confirmation updates.

Type 2 Event: Failed Withdrawal Transaction. The Bitcoin network may fail to confirm any
version of the withdrawal transaction.

24



11. Token Issuance

Various techniques make it possible to issue new units onto an existing blockchain. For example,
ERC-20 on the Ethereum blockchain, and Simple Ledger Protocol on the Bitcoin Cash blockchain.
These tokens can be stored and transacted using wallet software, as well as deposited onto servers
for off-blockchain transactions such as exchange. The following is a brief introduction to the
concepts and techniques involved.

The MatterFi ecosystem allows anyone worldwide to download our Node software and operate
distributed finance applications including issuance and processing of their own token or existing
tokens.

I. Colored Coins

The term ”colored coins” can mean two different things:
• A technique for carefully constructing blockchain transactions in a way that preserves

information apart from the base monetary value of the underlying units.
• The extra information preserved in the blockchain by employing the colored coin technique.
For the sake of clarity we will differentiate the technique from the information by using the

term virtual tokens to refer to the extra information that is preserved using the colored coins
technique.

II. Virtual Tokens

Virtual tokens possess all the capabilities of currency, plus one additional capability (smart
property) which is helpful for non-currency usage.

Users of virtual tokens can:
• Transfer them between individuals
• Combine multiple tokens into a single token with a greater value
• Divide the value of a single token into multiple tokens
• Use them in blockchain-scripted contracts
• Store them on the blockchain with multisig scripts
• Unambiguously prove that any particular virtual token is a valid member of a set created by

the issuer, without requiring the issuer to create and manage a token registry.

III. Enforcement

Virtual tokens represent ownership information, but they can’t enforce real-world obligations.
For example, a particular issuance of virtual tokens might represent tickets for entry to a concert.
The virtual token can prove the bearer should be allowed to enter the concert, but it can’t
force the bouncer to step aside and let him pass. Colored coin techniques can’t prevent the
user from manipulating the underlying bitcoins in a way that destroys the extra information,
because operations on virtual tokens are governed by Bitcoin transaction rules, and colored coin
requirements are more strict but not enforced by the network. Using virtual tokens in a transaction
that does not obey the colored coin rules destroys their extra meaning, leaving behind only their
base monetary value. This is equivalent to taking one’s paper concert ticket and setting it on fire.

25



IV. Metadata

The quantity and ownership of virtual tokens can be stored in the blockchain, but the semantic
information that indicates what a token means is not (and cannot be) similarly stored. For example,
the blockchain will track how many concert tickets have been issued and which address owns
them, but not the fact that they represent authorised entry into a particular concert at a specific
time and place. The storage of and operations on metadata require a specific kind of external
system, such as Open-Transactions.

V. Blockchain Limitations

The speed of colored coin transactions, and the capabilities of scripted contracts that use virtual
tokens are the same as those of the underlying blockchain.

26



12. Coloring Techniques

There are two techniques that may be used to create virtual tokens: transaction-based coloring
and address-based coloring.

I. Transaction-based coloring

Transaction-based coloring was pioneered by ChromaWallet and works by identifying a specific
Bitcoin transaction at a particular time as the ”genesis transaction” and tracking all units which
descend from the genesis transaction. Transaction-based coloring can produce the full range of
virtual token types, and has the security property that even a loss of the original private keys
to the genesis address cannot result in the issuing of counterfeit virtual tokens. This security
property means the number of virtual tokens matching a color DeFinition is fixed at the time
of creation and cannot be altered in the future—which can be an advantage or a disadvantage,
depending on the application.

II. Address-based coloring

Address-based coloring was created by Coinprism and tracks bitcoins which are descended from
any transaction that passes through a DeFined address. This means the issuer can easily create
new units in the future, but so could a thief who manages to steal the private key for that address.

13. Virtual Tokens

The different use cases for virtual tokens can be divided into three general categories, which form
the different types of virtual tokens.

I. Tickets

Tickets are transferable bearer tokens which are designed to be eventually redeemed for some
kind of real world value.

Examples of tickets include:
• Event entry passes
• Store coupons and special offers
• Frequent flyer miles and other redeemable rewards
Both address-based and transaction-based coloring can be used to create tickets.

II. Certificates

Certificates are transferable and redeemable in the same manner as tickets, and they additionally
entitle the bearer to some kind of revenue paid through the blockchain.

Certificates can be used for bearer securities, such as securitized loans, mortgages, bonds, and
dividend-paying stocks.

Both address-based and transaction-based coloring can be used to create certificates.

III. Smart Property

Smart properties are transferable like tickets and certificates, and in addition, every particular
smart property is both unique and atomic. Only one smart property of a given identifier can be

27



created, and once created it may not be subdivided.
Smart properties can be used to indicate ownership of a unique real-world asset, and can also

be used for objective naming of content-addressed mutable data. This naming function is related
to, and an extension of, hash-based naming.

A common operation in software engineering is to use cryptographic hash functions to create
short identifiers for large pieces of data. This is useful because hash values are easy to communicate
since they are short, and also are easy to check since they are deterministic. This means if you
know the name of some piece of data, you can independently verify that you have the correct copy
of it. But the limitation of hash-based naming is that the named data can never change.

Smart property overcomes this limitation. Because of a Bitcoin feature (OP RETURN) that
allows arbitrary data to be attached to transactions, every time smart property is moved it can be
associated with a new hash. This means if data is identified by a smart property identifier instead
of using the hash, the identifier of the smart property can objectively and unambiguously identify
the most current version of the data.

28



14. Example MatterToken-omics for a MatterFi Based Token Project

This section illustrates one of many possible hybrid on/off chain token projects that can be launched with
the MatterFi ecosystem. MatterFi isn’t a token company however we support many token ecosystems and
almost all of our customers have a token.

Here we propose creating a set of Ethereum-based DeFi contracts (the “MatterConverter”) that
allow participants to stake crypto assets in order to earn accrued interest in return for supplying
market liquidity. Borrowers, meanwhile can obtain loans from the staked assets but they have to
provide collateral denominated in other asset types. The acceptable collateral is set by governance.

The MatterFi ecosystem is powered by a utility and governance token, the “MatterToken.” In
addition to this token, the MatterConverter also issues separate "mTokens" to users who stake
funds. These mTokens are redeemable anytime for the underlying asset, and until that redemption
occurs, the mTokens continue accruing interest.

For example if a user stakes some amount of ETH, the MatterConverter receives that ETH
and in return, sends the user an equivalent number of mETH tokens, which are redeemable back
anytime for actual ETH.

mTokens are redeemable at an exchange rate (relative to the underlying asset) that constantly
increases over time, based on the rate of interest earned by the underlying asset. For example, the
amount of ETH that can be exchanged for mETH increases every Ethereum block.

Users that either stake or borrow not only earn interest on their stakes, they also get rewards in
the form of bonus MatterTokens utility tokens at launch. MatterTokens can be used for governance
of the MatterConverter. This includes voting on proposed changes to the protocol.

Any user who possesses mTokens can post them as collateral via locking in order to borrow
real crypto assets like ERC-20 tokens. When mTokens are locked the corresponding underlying
asset isn’t redeemable until the loan is paid off. To borrow the user must stake their collateral first.
In the case of borrowing, the amount that must be repaid increases over time as interest accrues.
If the borrower becomes insolvent before paying off his loan, then Liquidators are incentivized
to pay off portions of the borrower’s balance owed, in return for an increased percentage of the
borrower’s collateral. For example, if the liquidation incentive is 1.2, the MatterConverter pays
liquidators an extra 20% of the borrower’s collateral for every unit of debt that they close.

The MatterConverter is a fork of Compound. Thus far we have described features that
are available in the open source code of Compound. The MatterFi equivalent of Compound’s
’Compound token’ is the MatterToken. The MatterFi equivalent of Compound’s ’cTokens’ is the
mToken.

In this example, the MatterConverter could use the following patent pending additional
elements to substantially differentiate from Compound:

• Hybrid On-Chain and Off-Chain MatterNodes. For faster, cheaper, and more powerful
transactions, users can additionally deposit their coins and tokens into a MatterNode where
off-blockchain transactions can occur based on cryptographic proofs. Users gain access
to a variety of off-chain, cryptographically secure instruments such as digital cash, digital
cheques, invoices, recurring payments, exchange, and DeFi smart contracts. MatterNodes
can also organize into Pools, using blockchain-based multisig for secure storage of deposited
funds, essentially providing their users with deposits that are safe from theft and fraud.
MatterNode operators are rewarded with bonus MatterTokens for simply operating at a rate
set by governance.

• MatterNode Transaction Fee Handling. MatterNodes earn transaction fees for processing
off-blockchain transactions. At the point of each transaction, that fee is immediately sold for

29



MatterFi utility tokens, a percentage of which are then paid upstream to the MatterConverter.
The percentage is set by MatterConverter governance. If a MatterNode operator isn’t
charging any transaction fees (charity, etc.) then they get to use our ecosystem for free. If
they do charge transaction fees then we collect a portion of those for providing the software.

• MatterNode operators will receive increased staking rewards from the MatterConverter at a
rate set by the governance. Users of MatterNodes will be able to enter into a staking contract
with MatterConverter that’s managed for them by the MatterNode. Therefore they can opt
to receive mTokens that they can then use off-chain on the MatterNode.

• MatterNode operators will get to borrow from the MatterConverter at a discounted rate set
by the governance.

• Our MatterID identity protocol enables on-blockchain DeFi contracts (and off-blockchain
pools) to KYC-AML participants where appropriate. With our implementation, MatterFi
and our customers could use the system to create financial instruments for entities with
certain KYC-AML criteria. For example you could have an on-blockchain DeFi contract only
for residents of the USA, and a different one for residents of Japan. As such we will be
modifying Compound to add OBPP-05 capabilities to it with a patent pending OBPP-05
smart contract identity oracle. This will empower the MatterConverter with four new key
capabilities controlled by governance:

– OBPP-05 powered mToken issuance. A OBPP-05 enabled smart contract will know
exactly who to send corresponding mTokens to when the contract receives a stake. This
considerably simplifies smart contract operation as the smart contract no longer needs
to accept a staker’s receiving address blindly. This also eliminates the ability to use the
smart contract for money laundering. With OBPP-05 the user is always treated as a
single atomic entity by the smart contract as opposed to making the assumption that
the user will always provide a receiving address that’s really theirs. So when tokens
are received from the sender when it’s time to return them they will automatically go
back to the original sender.

– OBPP-05 enabled KYC/AML. The smart contract can be programmed to only accept
funds according to jurisdictional rules. For example, a certain currency could be only
available to OBPP-05 identities that have been KYC/AML’d by a certain entity. This is
implemented by automatically refunding unapproved transactions where a user doesn’t
have a OBPP-05 with the signed credentials. Additionally, the claims may be blinded,
see the "OBPP-05: Blind Claims" section above.

– OBPP-05 smart contract audit-ability. Although 3rd parties can’t divine anything
meaningful about transactions between any specific user and the smart contract, the
user and the smart contract can see the transactions between themselves when they use
OBPP-05 as they know their own and the other parties receiving addresses. Thus a smart
contract can maintain a log of transactions for some, all or none of its transactions that
are tied to KYC/AML’d identities to meet jurisdictional standards and this information
can be verified by inspecting the blockchain.

30



The system is depicted in the diagram below:

In this example, the daily token rewards will be distributed amongst the borrowers, stakers,
and MatterNode operators. The remaining tokens will be placed in a reserve used for growth. As
such the MatterConverter will be eventually controlled by the community and the reward rates
and distribution shall be decided by an increasingly community controlled governance.

MatterToken is differentiated from other tokens in the utility it offers by allowing users to
gain access to a hybridized crypto financial system where on-blockchain deposits are stored
securely while off-chain instruments make transactions much faster, cheaper, and more powerful.
Our ‘MatterID’ identity protocol would allow the MatterConverter liquidity reward system to
interact with other on-chain decentralized-finance contracts and off-chain with KYC-AML when
appropriate. This implementation would allow an on-chain contract to operate for residents of the
US differently than one for residents of Japan, a fencing feature not previously available. Users
would, for the first time, have the option of creating hybrid-crypto financial systems that they
could tune to their real time needs.

31



15. Conclusion

The MatterFi system with its MatterID identity credentials, Open-Transactions, token issuance and
voting pools represents a complete solution for the issuance, storage, and transaction processing
of blockchain-based assets, creating interesting business use cases across a myriad of industries.
For example:

• Retail Banking. Users can deposit cryptocurrencies in financial institutions (or federated
collectives of financial institutions) operating pools. These ”off chain” deposits are protected
by the pool but don’t require mining and process with speeds comparable to regular financial
transactions. For example, a user could transact cryptocurrencies or even, a bank issued
stable coin fiat equivalent.

• Exchanges, Investment, Trading Fintech. Voting pools are the currently most secure model for
operating an exchange that can trade any asset. Furthermore, the identity credentials afforded
by OBPP-05 allow money transmitters to KYC/AML their users and have cryptographic
proof that they are sending and receiving funds from identities they verified. This solves big
problems in meeting compliance for centrally regulated businesses in a global decentralized
ecosystem.

• Token Offerings. MatterFi’s Colored Coin implementation facilitates easy issuance and
liquidity of any type of token, be it a security, asset, or ”coin.” Token issuers with the
MatterFi system can make cross-chain moving of tokens possible. For example, start off on
Ethereum with ERC-20 tokens and move them to the Bitcoin Cash blockchain at the user’s
request. Tokens on disparate blockchains can also be deposited into a single OT MatterNode
and traded against each other.

• Gaming/Social Media. Presently these ecosystems usually employ their own in-house finan-
cial transaction systems that aren’t globally liquid. If they use cryptocurrencies for payment,
which is commonplace, the present solutions pose money laundering challenges as game
operators find themselves unwilling middle men for illicit transactions. MatterFi’s identity
scheme makes it easy for game companies to digitally meet the same financial requirements
as traditional fintech’s while maintaining their business model.

Presently and in the foreseeable future, global economies rely on centralized ”value creators”
offering services which is why users use these services. The fundamental problem MatterFi solves
is bridging the gap between the modern value creation system and its consumers, where everyone
desires to do so in a decentralized global environment supporting thousands of currencies.
MatterFi hopes to create a worldwide standard for off-blockchain and on-blockchain financial
functionality that allows centralized value creators to do business in a globally decentralized
crypto currency distributed finance system.

32



16. High-level DeFinitions

I. Blockchain

A blockchain is a hash-chained series of blocks comprising a ledger. Each block contains a series
of transactions (aka ledger entries), as well as the hash of the previous block in the chain. An
attacker can never change any existing block, because that would necessarily give it a different
hash, and since that hash appears in the next block, all subsequent blocks would be affected. The
proof-of-work necessary for such an attack is untenable; it would impose an exorbitant cost on the
fraudulent miner and in any case, would not gain him anything.

The biggest, most well-known blockchain, Bitcoin, exists as a peer-to-peer network, where each
peer maintains its own, identical copy of the blockchain ledger. The peers are able to agree on
the state of the ledger based on the axiom that the longest proof-of-work chain is the “true" one.
Anyone can pop up anonymously and start mining (that is, processing transactions), and earn an
honest living as long as he doesn’t try to defraud the network. Anyone who attempts to defraud
the network will not succeed, and he will also throw away a lot of money in the process, due to
the proof-of-work requirement for Bitcoin mining.

Since miners in Bitcoin are anonymous, they are also permissionless. There is no central
authority with the power to decide who can mine and who can’t. This “miner anonymity” is
why Bitcoin is sometimes called a “permissionless” chain. In contrast, other protocols, such as
Ripple/Stellar, make use of some central authority with the power to choose who can process
transactions, and who cannot. Since these systems require centralized permission to authorize
their validators, such systems are called “permissioned” for that reason. Due to this difference,
they are also often referred to as “distributed ledgers” instead of as “blockchains”. Put another
way, a blockchain is a kind of distributed ledger. Specifically, the kind that is permissionless and
requires proof-of-work. Whereas Ripple/Stellar is permissioned and uses a different protocol for
achieving consensus instead of proof-of-work. Ripple is not a blockchain, but it is still a distributed
ledger.

Another family of blockchains is based on the Ethereum network. The differentiator is
that Ethereum scripts are Turing-complete, whereas Bitcoin scripts are Turing-incomplete. This
basically means that Ethereum scripts are allowed to have loops in their code, and potentially
infinite loops. Bitcoin disallows loops, because infinite loops would cause the mining rigs to freeze
up for eternity. Ethereum solves this problem by allowing users to continually add “gas money”
to a running script to pay for its continued operation. Ethereum miners are happy to continue
running the script–even one containing an infinite loop–as long as they will continue to be paid
for running it.

II. Coin

A coin is the base currency of any distributed ledger or blockchain. The best example of a coin is
Bitcoin itself. Most other alt-coins are simply forks of the Bitcoin code. (They’re all mostly the
same under the hood). Examples include Litecoin, Bitcoin Cash, Dash, Dogecoin, etc.

Each of those blockchains has its own base currency. The base currency of the Bitcoin blockchain
is BTC. The base currency of the Litecoin blockchain is LTC. The base currency of Bitcoin Cash is
BCH, and so on.

The other distributed ledgers, such as Ripple, Stellar, and Ethereum, also have their own base
coins (XRP, XLM, and ETH, respectively).

33



III. Token

A token is a new unit type that can be issued onto a blockchain and circulate on that chain just
as the base coin circulates. There are different protocols for doing this. For example, the ERC-20
token protocol is used for issuing tokens onto the Ethereum blockchain. Similarly, the SLP token
protocol is used for issuing tokens onto Bitcoin-family blockchains. For example, SLP could be
used on Bitcoin Cash, or Litecoin, or Dash, etc., to issue tokens onto those blockchains.

IV. Stablecoin

A stablecoin is a token that is supposedly redeemable 1-to-1 for some national currency (such as
the dollar) by an issuer. A good example of this is Tether, who issues a dollar token and who
supposedly possesses enough dollar reserves to redeem every one of their tokens in circulation.
We say ‘supposedly’ because it is the user’s responsibility to do his own due diligence on each
dollar issuer, and to decide which issuers he will trust.

FINCEN recognizes “convertible virtual currencies” as any virtual currency that is convertible
back into “real” currency, or that acts as a substitute for “real” currency.

FINCEN regulates any “virtual currency administrator” who has issued such a token and
requires the issuer to have a money transmitter’s license and to be AML/KYC compliant.

V. Security Token

A securitytoken is a token that represents some type of security. For example, a token may be
redeemable for some commodity (such as gold), or it may represent stock in a company. Any
situation where the holder is promised some future return as a result of "future efforts of the team”
also falls into this category.

Security tokens are regulated by the SEC.

VI. Utility Token

A utilitytoken in the current day and age is usually considered by investors as “any token that
isn’t a security.” However, the classical interpretation of the term usually includes the fact that the
token is somewhere redeemable for some utility provided by the network. For example, Factoids
are a utility token that users have to use in order to pay for storing data proofs into the Factom
blockchain.

Another example of a utility token would be one that powers an ATM network. Which is to
say, any transactions occurring on any of those ATMs would subtract a small transaction fee in the
local currency and convert it to ATM tokens in order to pay for that ATM transaction.

Having some real-world utility tied to the token ensures that they will always have some
minimum real-world value.

VII. Fundraising

Security tokens and utility tokens can also be used for fundraising, since the issuer can print
up a number of new units and then, if there is demand for them, sell them and create market
liquidity. The issuer can continue selling into growing demand, using his issued tokens to fund
his operations and pay his employees. In these circumstances, the increasing market value of the
token becomes the overriding concern.

This activity is regulated by the SEC wherever these tokens are sold to U.S. Persons.

34



VIII. Cross-chain Tokens

It’s possible for an issuer to create units of his tokens on multiple blockchains. For example, he
may issue 100,000 units onto the Bitcoin Cash blockchain using the SLP protocol, and then issue
another 100,000 units onto the Ethereum blockchain using the ERC-20 protocol. In this example,
there are a total of 200,000 units in circulation, half on each chain.

This makes it possible for users to move their tokens from one blockchain to another. The
issuer (or any other market maker) simply offers to trade the tokens 1-to-1, enabling users to
convert tokens on one chain into tokens on another. In the user’s experience, this conversion can
also be managed “behind the scenes” by his wallet software, preventing any need for the user to
consciously have to place market offers whenever he desires to move his tokens from one chain to
another.

We note that cross chain tokens have yet to be created by anyone. We posit that this is true
because there hasn’t been a reliable cryptographically secure off chain system to move a token
between chains.

References

[1] David Chaum. Blind Signatures for Untraceable Payments. In D. Chaum, R.L. Rivest, and A.T.
Sherman, editors, Advances in Cryptology Proceedings of Crypto 82, pages 199–203, 1983.

[2] Jonald Fyookball, James Cramer, Unwriter, Mark B. Lundeberg, Calin Culianu, and Ryan X.
Charles. SLP Token Type 1 Protocol Specification, 2018. https://github.com/simpleledger/
slp-specifications/blob/master/slp-token-type-1.md.

[3] Ian Grigg. The Ricardian Contract. In Proceedings of IEEE Workshop on Electronic Contracting July
6, pages 25–31, 2004.

[4] Ian Grigg. Triple Entry Accounting, 2005. http://iang.org/papers/triple_entry.html.

[5] Ben Laurie. Lucre: Anonymous Electronic Tokens v1.8. Technical report, 1999, 2008.

[6] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. http://bitcoin.org/
bitcoin.pdf.

[7] Chris Odom. Triple Signed Receipts, 2010. http://opentransactions.org/wiki/index.php?
title=Triple-Signed_Receipts.

[8] Justus Ranvier. Payment Codes. https://www.reddit.com/r/Bitcoin/comments/3alzga/
bip47_reusable_payment_codes/.

[9] Justus Ranvier. Voting Pool Deposit Process. http://opentransactions.org/wiki/index.
php/Voting_Pool_Deposit_Process.

[10] Justus Ranvier. Voting Pool Withdrawal Process. http://opentransactions.org/wiki/index.
php/Voting_Pool_Withdrawal_Process.

[11] Justus Ranvier. Voting Pools. http://opentransactions.org/wiki/index.php/Voting_
Pools.

[12] Justus Ranvier. BIP-47 Specification, 2015. https://github.com/bitcoin/bips/pull/159.

[13] Justus Ranvier. Universal Identity, 2015.

35

https://github.com/simpleledger/slp-specifications/blob/master/slp-token-type-1.md
https://github.com/simpleledger/slp-specifications/blob/master/slp-token-type-1.md
http://iang.org/papers/triple_entry.html
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://opentransactions.org/wiki/index.php?title=Triple-Signed_Receipts
http://opentransactions.org/wiki/index.php?title=Triple-Signed_Receipts
https://www.reddit.com/r/Bitcoin/comments/3alzga/bip47_reusable_payment_codes/
https://www.reddit.com/r/Bitcoin/comments/3alzga/bip47_reusable_payment_codes/
http://opentransactions.org/wiki/index.php/Voting_Pool_Deposit_Process
http://opentransactions.org/wiki/index.php/Voting_Pool_Deposit_Process
http://opentransactions.org/wiki/index.php/Voting_Pool_Withdrawal_Process
http://opentransactions.org/wiki/index.php/Voting_Pool_Withdrawal_Process
http://opentransactions.org/wiki/index.php/Voting_Pools
http://opentransactions.org/wiki/index.php/Voting_Pools
https://github.com/bitcoin/bips/pull/159


[14] Justus Ranvier. OBPP-05 Specification, 2021. https://github.com/
OpenBitcoinPrivacyProject/rfc/blob/master/obpp-05.mediawiki.

[15] Justus Ranvier and Jimmy Song. Hierarchy for Colored Voting Pool Deterministic Multisig Wallets.
https://github.com/Open-Transactions/rfc/blob/master/bips/bip-vpc01.mediawiki.

[16] Justus Ranvier and Jimmy Song. Hierarchy for Non-Colored Voting Pool Deterministic Multi-
sig Wallets. https://github.com/Open-Transactions/rfc/blob/master/bips/bip-vpb01.
mediawiki.

[17] Bill St. Clair. Truledger in Plain English, 2008. http://truledger.com/doc/plain-english.
html.

36

https://github.com/OpenBitcoinPrivacyProject/rfc/blob/master/obpp-05.mediawiki
https://github.com/OpenBitcoinPrivacyProject/rfc/blob/master/obpp-05.mediawiki
https://github.com/Open-Transactions/rfc/blob/master/bips/bip-vpc01.mediawiki
https://github.com/Open-Transactions/rfc/blob/master/bips/bip-vpb01.mediawiki
https://github.com/Open-Transactions/rfc/blob/master/bips/bip-vpb01.mediawiki
http://truledger.com/doc/plain-english.html
http://truledger.com/doc/plain-english.html

	Introduction
	MatterID
	Identifying Users and MatterNodes for AML-KYC or Other Purposes
	OBPP-05
	Useful Properties of OBPP-05 in Distributed Finance:

	MatterID Credentials
	Blind Claims
	Open-Transactions Protocol
	Financial Cryptography
	Financial Instruments
	Destructible Receipts
	Counterfeiting
	Voting Pools

	MatterFi Voting Pools
	Security Goals
	Security Model
	Security Theorem
	The MatterAuditor
	MatterNode
	Audit Stream
	OT Client
	Voting Pool Key Management
	Standard Pool Sizes

	Voting Pool Deposit Process
	Initiation
	Payment Script Generation
	PaymentRequest delivery
	Deposit and Crediting

	Voting Pool Withdrawal Process
	Initiation
	Consensus Round Transaction Formation
	Consensus Round Signature Exchange
	Consensus Round Transaction Fee Accounting
	Completion

	Token Issuance
	Colored Coins
	Virtual Tokens
	Enforcement
	Metadata
	Blockchain Limitations

	Coloring Techniques
	Transaction-based coloring
	Address-based coloring

	Virtual Tokens
	Tickets
	Certificates
	Smart Property

	Example MatterToken-omics for a MatterFi Based Token Project
	Conclusion
	High-level DeFinitions
	Blockchain
	Coin
	Token
	Stablecoin
	Security Token
	Utility Token
	Fundraising
	Cross-chain Tokens


